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A Network Approach to Unravel Asset Prices

Co-movements Using Minimal Dependence Structures

Abstract: In many fields, networks have been used to filter information and describe con-

nected systems. In this paper, we build on the minimum spanning tree (MST) literature

developing a layered MST that uses a multi-factor model to explain the dynamic dependen-

cies among elements using systematic and idiosyncratic components of asset prices. This

framework proves to be flexible with changes in the underlying data and the choice of fac-

tors for the investigation. We show applications of our framework in different contexts and

observe that the methodology is helpful in understanding the change of the interdependen-

cies among entities in a data-set. Using this approach we are able to demonstrate dramatic

changes in the topology of asset prices networks.

1 Introduction

The interdependence between elements of a financial set is central for decision making and

risk management. From the classical portfolio theory investigating the benefits of diver-

sification to present issues in finance such as monitoring and managing systemic risk, the

estimation and interpretation of the co-dependencies is very important for financial manage-

ment. However, identifying the co-dependencies poses many difficulties, especially when the

number of variables is large or co-dependence is time-varying, once estimating parameters

on the order of the square of the number of assets leads to too many spurious inferences.

Focusing on a global-level description, viewing the financial set as complex system, can be a
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complementary tool to risk management.

In many practically important areas, a network representation significantly aids the anal-

ysis of large datasets (Huang et al., 2009). A network representation of co-dependencies

requires defining a topological space of nodes and links defining interconnections and in-

teractions between nodes. In this paper, we develop a framework for the interpretation of

temporal aspects of co-dependencies in asset price movements. This framework includes

a visual representation of the correlation matrix of returns, that is accomplished using a

similarity based network. This network is constructed taking into consideration the relative

influence of systematic and idiosyncratic factors and how they change in time. Nodes of this

network are connected to others ranked by the strength of their co-movement. We apply this

conceptual framework in two different sets of stock prices and provide insights that would

not be captured using traditional financial tools.

In modern financial literature, networks can be broadly divided into relation defined

networks or similarity-based network. On relation-defined networks the nature of the rela-

tionship between the elements is given by some form of event or common capability such as

balance sheet claims (Allen and Gale, 2000; Gai et al., 2011) or fund flows (Barro and Basso,

2010; Minoiu and Reyes, 2013). These studies are usually concerned with how stochastic

shocks propagate through the network. Similarity-based networks, on the other hand, focus

on the similarity between nodes such as correlation of returns (Mantegna, 1999), common

contracts (De Masi and Gallegati, 2012), financial statement variables (Papadimitriou et al.,

2013) and probability of default (Tabak et al., 2011).

The study of the relationship between diversity and system stability has been the focus

of many fields in science (Engle et al., 2010). Similarly, financial markets are also highly
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interconnected with rather complex relationships between financial instruments. The pro-

posed network rellies on a distance measure based on co-movements of daily returns as links

among the elements. Such approach has been extensively used in many different contexts.

For instance, Aste et al. (2005) study interest rate data by filtering information from the

correlation coefficient matrix to extract a network of the most linked (correlated) elements.

A similar approach is taken in Tse et al. (2010), where network properties are analyzed

for stock returns from the US equity market. They report that there are a small num-

ber of highly connected stocks, and propose that portfolios of these stocks are capable of

representing majority of stock market.

Complex systems are often described in hierarchical form, where stronger relationships

are first filtered, and specific and minor relations surface later in the process (Simon, 1962).

This framework relies on a minimal spanning tree (MST) representation of the network

for a minimalist and most significant identification of connections between nodes and their

temporal evolution. An MST is a common method to unveil the structure of complex systems

(Vandewalle et al., 2001) by progressively built by minimally linking all the nodes together

in a graph characterized by the strongest links or smallest distances between the nodes.

Hierarchical clustering, such as MSTs, are filtering procedures useful in multivariate

characterization of stock return time series (Tumminello et al., 2010). MSTs were first used

in finance by Mantegna (1999) for network analysis of stock price correlations. Using equity

prices from the Dow Jones Industrial Average (DJIA) index and the Standard and Poor’s

500 (S&P 500) index, Mantegna (1999) constructed a hierarchical arrangement of the stocks

after organizing them by their industries. In a further study, Onnela et al. (2003) showed

that companies in a minimum risk portfolio are consistently in the farthest areas of the MST,
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suggesting that even if the hierarchical structure changes in time, these economic clusters

can help in portfolio allocation and risk management.

MST framework have also been applied in the context of foreign exchange rates (Bo-

nanno et al., 2004; Mizuno et al., 2006; Naylor et al., 2007) revealing clusters representing

geographical regions of the world. The structure, however, is is highly dependent on the

numeraire chosen Kwapień et al. (2009), suggesting that there are relevant factors that in-

terferes in the way networks are formed. This is consistent with the evidence that MSTs

from one-factor model filter important information about pair-wise dependencies and differ

substantially from those constructed directly from the original data (Bonanno et al., 2003).

Our financial network representation incorporates explanatory factors for evaluating the

underlying dependency structures of asset nodes. From the development of the Capital

Asset Pricing Model (Sharpe, 1964), factor models have been widely used to explain and

predict returns. In Fama and French (1993), the authors show that apparent anomalies of

the CAPM can be explained with the inclusion of new factors giving rise to multi-factor

literature. The use of several factors helps reduce the complexity and randomness of the

analysis of the dependence structure between assets. The factors are chosen according to

the assets and attempt to reflect common components across assets in their price structure.

Thus, these models decompose asset returns in two parts: a systematic component, explained

by the chosen factors, and other idiosyncratic, specific to the asset and the orthogonal to

the factors.

The topological space in this framework contains three distinct subsets of elements: sys-

tematic factors, core asset nodes and idiosyncratic nodes. A core asset node connects with

the rest of the network either through one of the explanatory factors or through its id-
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iosyncratic element. In doing this filtration, we focus on understanding the relevance of the

underlying explanatory factors on the interdependence between two different assets. Con-

nections arising from two idiosyncratic nodes suggest that similarities between two assets are

weakly explained by the factors. This approach is different from the partial correlation in

Kenett et al. (2010), where the authors are concerned with the degree to which hedging de-

cision can be made in sectors based on factor regressions. We find that relative and absolute

importance of factors change over time.

The choice of the dependence structure is an important feature of studying co-dependence,

as the failure to capture interdependence structure or its misidentification can lead to subop-

timal and costly decisions (Kole et al., 2007; Chollete et al., 2009). Our approach allows for

the use of any interdependence measure in order to define the distance matrix. Without loss

of generality, in this paper, we construct distance networks based on Pearson, Spearman,

Kendall and exponentially weighted correlation measures.

Beyond the choice of factors, the other challenge in analyzing the dependence structure for

asset prices is the temporal modifications in the dependence structure. The misidentification

of these co-dependencies can often arise from the fact that these co-dependencies are time-

varying (Engle and Figlewski, 2015). The hypothesis of non-stationarity of financial time

series has been widely tested, with evidence heavily in favor of non-stationarity of financial

time series data. Using data for emerging markets, Boyer et al. (2006) find that co-movement

in joint distributions increases during high volatility periods. Non-stationarity may arise from

asymmetric volatility spillovers, as seen for Eurozone stock market data (Kohonen, 2013).

Similarly, Ang and Chen (2002) study correlations between U.S. stocks and the aggregate

U.S. market, where they see clustering behavior that is more pronounced for downside moves,
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especially for extreme downside moves, than for upside moves. Longin and Solnik (2001)

run a similar experiment for large international markets and find no evidence of clustering

during periods of high volatility in prices, but still find that correlations are greater during

bear markets than in bull markets. Although Forbes and Rigobon (2002) find no significant

increase in unconditional correlation coefficients, during the 1997 Asian crisis, 1994 Mexican

devaluation, and 1987 U.S. market crash, there were high levels of market co-movements in

all these periods, which they term interdependence.

Non-stationary dynamics of asset prices implies that an investor would need to do more

than just re-balance portfolios in time, even if their risk-aversion remains unchanged. This

would also have implications for the role of explanatory systematic factors changing with time

in a multi-factor model. Time-varying beta models are constructed to address this issue (Ang

and Chen, 2002). Being able to extract the most essential features for these temporal changes

in joint distributions can be highly instructive in how dramatically the portfolio weights must

change (Das and Uppal, 2004). In this paper, the financial network is reconstructed over

time enabling us to evaluate the temporally evolving co-dependencies between nodes. In a

temporally evolving network, although the definition of nodes remains the same, the links

between them can change, allowing the examination of relative significance of idiosyncratic

versus systematic connections between nodes.

The framework developed in this paper allows analyzing hundreds of asset price variables

to minimally identify their interconnections, with careful distinction made to detect the

source of connection being idiosyncratic, or through systematic factors. It offers flexibility

in the choice of explanatory factors to suit the specific objectives of the study and the

context of constructing a minimalist interdependency between nodes. Temporal behavior of
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the network enhances understanding of the links between entities by evaluating the impact

of economic shocks on the network topology. This flexibility allows comparing the relative

importance of factors for a given set of asset prices in a specific economic environment. While

some of the connections are more persistent, other links are disabled and enabled according

to the different economic or financial conditions.

We demonstrate these features by applying the framework to few different contexts: in-

dustry indices, blue chip stocks and financial institutions and analyze the dynamic relevance

of Fama-French factors (Fama and French, 1993). We utilize appropriately designed network

metrics to provide a summary of the characteristics of the network. We notice that these

networks changing in time very frequently and that these patterns share commonalities for

industry level and stock level returns.

The rest of the paper is organized as follows. In the next section, we describe the

construction of MST financial networks with explanatory co-dependence features, as well as

define network metrics suitable to measure network characteristics. In Section 3, we apply

this framework to the different financial application contexts. We show how the network

behaves when we change the window size and the correlation metrics in section 4. In

section 5, we discuss the results and conclude.

2 Modeling Explanatory Dependencies

In this paper, we develop a framework that possesses explanatory capacity for temporal co-

dependencies in asset price movements. As such, given the number of assets or firms under

study, such a model can be quite complex in structure, with numerous inter-asset or inter-
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firm linkages. Our model is minimalist in identifying the most significant interdependencies

among asset prices and how these interdependencies change with time.

We wish to develop a dependency structure for N asset prices, Yi(t), i ∈ {1 . . . N}.

Creating a minimal dependency structure, such as a minimum spanning tree, based on

pairwise asset price correlation (Mantegna, 1999) fails to construct an explanatory indicator

for these connections. We identify a set of explanatory factors, Xj(t), j ∈ {1 . . .M}, to

include in the development of the co-dependency structure. In this design, the asset prices

and explanatory factors are identified as nodes, with each group of nodes forming a network

layer.

The role for explanatory variables in our model is to verify how determinant they are

in explaining asset price co-movement. Asset prices may move due to these explanatory

variables, or may co-move due to their idiosyncratic, or firm-specific unique, characteristics.

In order to elucidate this possible explanatory role, we split each asset price node into its

systematic component Y ′i (t), i ∈ {1 . . . N}, and idiosyncratic or unique component, Zi(t),

i ∈ {1 . . . N}. This is accomplished by implementing the following factor model.

Yi =
M∑
j=1

rijXj +

√√√√1− (
M∑
j=1

rij)2Zi, (1)

where each term of the factor model is described as follows:

• Yi: return of asset i;

• rij: factor loading of ith asset on jth explanatory factor;
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• Xj: explanatory factors (Note that Xj as a factor can assume negative values.);

• Zi: idiosyncratic component of asset price evolution;

•
√

1− (
∑M

j=1 rij)
2: idiosyncratic factor loading.

The above factor model is implemented by applying ordinary least squares regression of

the asset returns on the returns of theM explanatory factors. The residual of the regression is

taken as the idiosyncratic portion of asset price movements not explained by the explanatory

factors. This decomposition of asset price nodes results in 2N + M nodes in the network,

where there areM explanatory factors, N asset price nodes andN idiosyncratic component of

asset nodes. In this expanded network, the construction of the minimum spanning tree must

be modified to serve its purpose. Note that, by selecting only the most relevant connections

to each node, we filter out spurious links.

The co-movement between asset prices, explanatory factors and idiosyncratic component

is measured using a dependence measure. For the purpose of this paper, we use four different

dependence measures, Pearson ρP , Kendall ρK , Spearman ρS and weighted ρW .
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ρPAB =

∑n
i=1(Ai − Āi)(Bi − B̄i)√∑n

i=1(Ai − Āi)2
√∑n

i=1(Bi − B̄i)2
, (2)

ρKAB =
1(
n
2

) ∑
1≤p≤q≤n

sign((Ap − Aq)(Bp −Bq)) (3)

ρSAB =
12

n(n2 − 1)

n∑
i=1

(
rank(Ai)−

n+ 1

2

)(
rank(Bi)−

n+ 1

2

)
(4)

ρWAB =

∑n
i=1 α

n−i(Ai − Āi)(Bi − B̄i)√∑n
i=1 α

n−i(Ai − Āi)2
√∑n

i=1 α
n−i(Bi − B̄i)

(5)

As such other measures for co-movement can be selected, however unless noted otherwise,

we use Pearson correlation. Therefore, we measure intra-layer and inter-layer correlations

ρyxij , between asset prices, explanatory factors ρxij and idiosyncratic components ρzij.

In order to develop a minimalist co-dependence structure, we adopt the minimum span-

ning tree (MST) approach widely studied in the literature Mantegna (1999), to identify

the most significant intra-layer and inter-layer links of the network. Constructing an MST

requires transforming the co-movement measure, in our case correlations, into a distance

measure. A distance measure for inter-layer and intra-layer nodes is constructed as follows.

dz(i, j) =
√

1− |ρzij|, (6)

dx(i, j) =
√

1− |ρxij|, (7)

dyx(i, j) =
√

1− |ρyxij |, (8)

We acknowledge the fact that negative correlation is just as much an indicator of co-

dependence as positive correlation is, and follow Zheng et al. (2013) in using a distance

metrics that takes into consideration the absolute value of the correlation. This is especially

important for relationship between explanatory factors and asset prices. It can be shown

that the above distance measure satisfies the properties of a norm. For instance,
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1. d(.)(i, j) = 0 if and only if i = j,

2. d(.)(i, j) = d(.)(j, i), and

3. d(.)(i, j) ≤ d(.)(i, k) + d(.)(k, j).

The distance measure, d(.)(i, j), is used to determine the inter- and intra-layer links to

construct the minimal spanning tree connecting the N asset prices, N idiosyncratic com-

ponents and M explanatory factors using 2N + M − 1 links. It should be noted that the

higher the correlation between nodes, positive or negative, the shorter the distance between

the nodes by this chosen distance measure.

The modified minimum spanning tree is constructed as follows. We construct the distance

matrix, [d(.)(i, j)], for the entire set of nodes as the first step. All the asset nodes, N of them,

are connected to their corresponding idiosyncratic component nodes. This forms N two-node

subnetworks of the assets. The complete network is formed by the connections between these

subnetworks via the idiosyncratic nodes or by connections of these subnetworks with the

explanatory factor nodes via the asset node.

The identification of the rest of the links to construct a minimal spanning tree follows

a greedy sequential approach of discovering the links. The upper-diagonal entries of the

distance matrix constructed for idiosyncratic node interaction and asset node-explanatory

variable interaction is sorted in an increasing order. These sorted values are used to identify

links of a minimal spanning tree, picking the most significant links that minimally connect

the entire set of nodes. From the lowest to the highest values of pair-wise distance measures,

links are constructed sequentially for each node so that the node is connected to the network

through the closest (or shortest distance measure) node, until all the nodes are connected.
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The layered minimum spanning tree for the explanatory co-dependence structure among

asset prices can indeed change with time. This structural evolution can be instructive at

the overall network level, as well as at a single asset or firm level. Moreover, studying

temporal characteristic of the co-dependence structure can provide insight regarding the

role of explanatory factors and impact of economic shocks. Therefore, we are interested

in observing the change in the minimum spanning tree network constructed above through

time.

The temporal evolution of the minimum spanning tree is constructed by rolling the

window of observations while constructing the layered network. Each window of observations

it taken to have T data points, for instance, we use a 120 day or approximately 6 months

window in our study. At each point in time t, there is a set of Yi(t) and Xj(t) observations,

from which the idiosyncratic terms, Zi(t), are extracted. With all the nodes defined, ρ(t) and

dij(t) are computed for time t as a function of the T observations. This generates a unique

layered network for each time t. We then move the rolling-window by a time-increment,

∆t, and re-construct the network. This helps us evaluate the topological variations in co-

dependence structure for the asset prices over time.

In our model development thus far, we have described the construction of static and

dynamically-evolving two-layered explanatory co-dependence network structure for asset

prices. In order to analyze the properties of this network, we need to define appropriately

constructed network measures. These network measures must be developed keeping in view

the two-layered structure and three types of nodes, explanatory factor nodes, X, system-

atic component of asset prices nodes, Y and idiosyncratic component of asset price nodes,

Z. There are the inter-layer links, which perform the primary explanatory role between
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asset prices and explanatory variables, and intra-layer links that indicate how idiosyncratic

connections among assets occur or how explanatory factors are linked together.

The analysis of the network requires understanding the nature of connectivity between

nodes in terms of node degrees and link sizes. Node degree degi is the number of links

connecting a given node to the rest of the network. Higher node degrees in a network

indicate clustering, i.e., a few nodes assuming significant, central position. The link size lij

is the distance between two connected nodes i and j. Our distance measure, dij(t), is a

monotonically decreasing function of the absolute value of correlations, ρ(t), thus smaller

link sizes indicate stronger connection between entities.

A measure of network’s overall strength of connectivity is given by the total link size for

all the links of the network. The average link size normalizes this measure. We begin the

analysis with the overall strength of connectivity of the network by calculating the average

link size, irrespective of the layer the links belong to. Therefore, we define

l =

∑2N+M−1
k=1 lk

2N +M − 1
, (9)

where we note that the minimum spanning network has 2N + M nodes and that lk is

the kth of the 2N + M − 1 connected lij links . The average size of the links shows the

average strength and the average size of the network. We similarly define and analyze the

average strength of connectivity for intra-layer links and inter-layer links using the link sizes

of: inter-layer connections lxy, and the average link size intra-layer explanatory lxx links and

idiosyncratic lzz links.

In the temporal evolution of the minimum spanning tree, at any point in time, a drop in
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the average link size of inter-layer connections lxy indicates connections between explanatory

factors and asset prices getting stronger. This may happen due to the existing inter-layer con-

nections becoming stronger or because the weaker inter-layer connections getting disabled.

The average link size of intra-layer connections among explanatory factors, lxx, indicates how

systemically close the explanatory factors are moving. A higher value of lxx indicates that

the connected factors are connected only weakly. Finally, a low value of the average link size

of intra-layer idiosyncratic links lzz indicates that asset prices are strongly connected due to

their idiosyncratic characteristics.

In a minimum spanning tree, although the number of links of the network is constant,

2N +M − 1 in our case, the dispersion of node degree values is an indicator of the topology

of the network. We use two metrics to represent this dispersion, standard deviation of node

degrees and maximum node degree. Standard deviation of node degrees as our dispersion

measure is defined as follows,

σDeg =

√∑2N+M
i=1 (degi − deg)2

2N +M
, (10)

where deg is the average node degree of all the nodes.

The node degree of each of the 2N +M nodes of the network is greater than or equal to

1, and is at most 2N + M − 1. The standard deviation of node degrees holds information

regarding the structure of network topology. Networks highly concentrated around a couple

of nodes will tend to have a high standard deviation of node degrees, while in sparse de-

centralized networks, nodes will tend to have similar node degrees. Thus, chain-like networks

will have a lower standard deviation of node degrees and star-like networks will have a greater

standard deviation of node degrees. Standard deviation of node degrees can also be defined
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specifically for each type of node, explanatory factor, idiosyncratic or asset price node.

An alternative measure of dispersion is the highest node degree of the network. This

measure represents the number of links of the most connected node and provides insight

on the important role the most connected node plays in the network. Higher maximum

node degree is associated with star-like networks. where one node has higher importance in

connecting the other nodes to the network.

3 Empirical Analysis

We apply the framework of developing an explanatory minimal dependence structure in asset

prices to a few contexts and discuss the results. We first study the overall US economy, since

the 1970s, by examining the relationship between industry portfolios. Then, we focus on

blue chip stocks since the 1990s.

The framework requires selecting factors considered suitable for developing the explana-

tory dependence structure among asset prices. Since the development of the Capital Asset

Pricing Model (Sharpe, 1964), researchers have studied asset prices from the perspective of

their linear relationship with explanatory factors. In Fama and French (1993), the authors

show that apparent anomalies of the CAPM can be explained with the inclusion of new

factors giving rise to multi-factor literature. The authors identify both firm size and book to

market value of equity ratio to have a role in determining the cross-section of average equity

returns. The explanatory layer of the networks is constructed using these three common

Fama-French risk factors for equity: market return, size factor (SMB) , and value (HML)

factors. Data and detailed explanation for these factors can be obtained from the Kenneth
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French Data Library 1.

3.1 Industry Indices

In Fama and French (1997), the authors note that the three-factor risk loadings for industries

are not constant and a full sample estimation could generate inaccurate estimations of the

dependence structure. Our framework can help understand how these risk-loadings are

changing in time.

We use an updated data set from Kenneth French Data library. As in Fama and French

(1997), each stock from NYSE, AMEX and NASDAQ is assigned to an industry portfolio

based on its SIC code. The updated version of this data set includes 49 industries. We

start our analysis in 1970 and observe daily closing prices until 2014. For each day in the

sample, we construct the unlayered minimum spanning tree among all nodes and the layered

minimum spanning tree using the explanatory factors, as discussed in section 2, using a

rolling window of 120 business days.

The resulting network characteristics are summarized in plots of Figure 1. In the top

graph of the figure, we indicate a comparison of average distance between nodes in the flat or

unlayered network versus in the explanatory layered network. In the flat unlayered network,

all nodes are identical and represent one of the 49 industries, however in the explanatory

layered network, there are three types of nodes, the explanatory factor nodes, idiosyncratic

nodes and pure nodes, represented by returns of the industry portfolios. In this plot, the

average distance does not discriminate the node type from which the distance is measured.

Since the total number of connections in a minimum spanning tree is a constant, the average

1Available at http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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Figure 1: Comparing layered and unlayered network in terms of average distance between
nodes (top graph), highest node degree (middle graph) and standard deviation of node degree
(bottom graph) for 49 industries

distance between nodes of the networks provides insight on the overall strength of connections

between entities of the network.

As seen in the average distance plot of figure 1, there is significant variability of this

metric for both networks. The average distance for both types of networks move together at

all times, suggesting that the information provided by an unlayered network is not lost in

this new framework. Over time, the average distance reduces. These stronger of connections

show that the dependence measure is higher across the system and thus co-movement is

rising. Also, there are sudden reductions of the distance for small periods of time that seem

to coincide with financial crises, such as 1987, 1997, 2008 and 2011. This metric, however,

does not provide information if the shape of the network is changing and whether the network

is becoming tighter due to firm specific characteristics or to common explanatory factors.

The second and third plots of the figure provide information on the shape of the networks.

The maximum node degree shows the importance of the most connected node to the network,
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while the standard deviation of the node degree sheds light on the dispersion of node degrees

across the network. By design, these two metrics bear a very strong relationship. These

dispersion metrics change very frequently for the unlayered network, but the layered network

is more stable and abrupt shape changes don’t happen as often. We notice that the layered

network is very star-like, i.e. few nodes concentrate most of the links until the the end of

the 1990s, when its shape changes dramatically until 2002. After that, the network changes

back to its original star-like shape.
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Figure 2: Network characteristics by node type in explanatory layered network, in terms of
average distance between inter- and intra-layer nodes (top graph), number of connections
intra- and inter-layer (bottom graph) for 49 industries

A natural element to investigate in the shape of the layered network is the relationship

between the different types of nodes. In Figure 2, we present inter- and intra-layer network

properties. In the top graph of the figure, average distance for only the inter- and intra-layer

links are displayed. The inter-layer average distance indicates the strength of explanatory

connections for the financial institutions over time, while intra-layer, especially within the
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idiosyncratic layer, indicates unique linkages between financial institutions. In the lower

graph of the figure, we display the number of inter- and intra-layer links. As such for

2N + M nodes in the network, the total number of links in a minimum spanning tree is

2N +M − 1. Therefore, the point of attention here is how many of these 2N +M − 1 links

are inter-layer and intra-layer, respectively.

The top graph of Figure 2 shows that the inter-layer and idiosyncratic intra-layer average

distance displays significant modulation through time. When compared with plot of Figure 1,

the inter-layer average distance seen in this plot shows the contribution of strengthening of

connections between industries arising from explanatory factors. In the bottom plot, we

see that the change in shape of the late 1990s and early 2000s, is driven by the increased

importance of idiosyncratic connections. We also note that the presence of these connections

is not necessarily due to augmented co-movement, but rather to lack of explanatory power

from the factors.
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Figure 3: Node characteristics in explanatory layered network, in terms of degree of explana-
tory factor nodes (top graph), number of connections between idiosyncratic nodes (bottom
graph) for 49 industries
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In Figure 3, we show the node degree for each of the explanatory factors. As expected,

the market factor is prevalent during the whole sample period. However, during the period

between 1999 and 2002, the importance of this factor is reduced and connections involving

the SMB factor and among idiosyncratic nodes are enabled. We use the insights obtained

thus far from the explanatory layer network characteristics to select six specific time points

for which we display the actual layered network.

In order to aid visualization of a network with a large number of nodes, the layered

network for these time points is shown in a carefully constructed format in Figure 4. The

systematic or explanatory factors are placed in an arc as the top layer, the core firm nodes

form the next layer, while the idiosyncratic nodes are organized on an arc in the bottom

layer. This facilitates displaying connection of core firm nodes with explanatory factors,

and intra-layer connections among explanatory factors and idiosyncratic nodes, respectively.

Links are colored according to the sign of their dependence metric, blue links represent

positive co-movements and red links represent negative co-movements.

In 1987, only two industries are not directly linked to the market risk factor, they were

gold and mines. Besides being linked to each other, these industries are linked to the rest

of the network by the the idiosyncratic link between mines and autos. It is remarkable

how the explanatory power of the factors change during the 2 years around the turn of the

century. On January of 2000, 13 assets are not linked to the market risk factor. In general,

they were consumer non durables (agriculture, food soda, beer, tobacco products, books),

transportation (ships), mining and minerals (non-metallic and industrial metal mining, gold),

utilities, software and banks. We notice some negative links between factors and nodes, n

particular, the SMB is directly linked to industries such as food products, beer and liquor,
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Figure 4: Display of networks for six time points along the observation period. The explana-
tory factors are (from right to left) RM-RF,SMB, HML, TERM.

utilities and the HML was directly linked to the software industry. On June of 2000, the 21

nodes are not connected to the market risk factor. Industries disconnecting from the market

risk factor are close to those that were already disconnected, but many were still connected

to the SMB and HML. By October of 2000, these industries remain disconnected from the

market risk factor, but become connected among them by idiosyncratic links. We also note

that during the 2008 financial crisis, only 6 industries are not directly linked to the market

risk factor. They are all connected among them, on a subnetwork of mininng and energy

industries, that connects to the rest of the network by the steel industry.

3.2 Blue Chip Stocks

Having identified that this network of industry indices has some patterns, we move on to

investigate whether the same pattern is present on a group of blue chip stocks. For this

analysis, we select all stocks that were part of the Dow Jones Industrial Average Index since
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the 1990s. We drop from the sample three firms that had their IPO after 1990 and do not

have data for the whole period.
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Figure 5: Comparing layered and unlayered network in terms of average distance between
nodes (top graph), highest node degree (middle graph) and standard deviation of node degree
(bottom graph) for 33 Blue Chip Stocks

We see a strong relationship between the network metrics shown in Figures 1 and 5.

When we examine the average link distance, peaks and troughs are coincident suggesting

that the dependence between industries strengthening of the industry level network happens

at the same time as the network on the firm level. The same happens for the shape of the

network, in particular the large decrease of the maximum node degree around in 1995 and

around the time of the dot com bubble bust.

In fact, when we observe the evolution of the node degree of factors, we notice that during

the two periods aforementioned, the market factor loses importance to the SMB. In these

two particular intervals, there are also high numbers of intra-layer idiosyncratic connections

hinting to an apparent reduction on the importance of the Fama-French factors in explaining

returns. Another important and relevant finding is that, after the financial crisis, the market
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Figure 6: Node characteristics in explanatory layered network, in terms of degree of explana-
tory factor nodes (top graph), number of connections between idiosyncratic nodes (bottom
graph) for 33 blue chip stocks

factor appear as the sole connected factor. This evidence is consistent with the empirical

findings that co-movement increases during high volatility periods Boyer et al. (2006).

4 Robustness of the Network

A natural question that arises from the analysis of the results on section 3 concerns the

robustness of the network and its metrics under different assumptions, i.e., what happens

when the window size or the co-movement measure changes. In this section, we show a couple

of different ways of selecting and observing the network. As expected, much like correlation

analysis, the information filtered by the network will vary according to the parameters used.

There is a trade-off between information and stability when choosing the window size

of estimation. Shorter windows will yield more rapid updates of the network, while longer

windows will provide more stable networks. For applications that require higher frequency
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updates, however, a minimum number of data points is necessary to provide consistent

estimates. For instance, while the unlayered network has n(n−1)
2
∼ n2

2
input parameters,

the layered network has (f+2n)(f+2n−1)
2

∼ (f+2n)2

2
. Since there are NT observations of asset

returns and FT observations of factor returns, this means that we need T >> n
2

for the

unlayered network to be estimated and T >> f+4n
2

, which means that, for our cases, 120 is

the most appropriate window size.

Another concern could come from the convenience of overlapping rolling windows, once

by rolling only one day at a time, our network carries each observation for the duration of the

window. We use the example of 49 industries and 3 factors to explore these two questions.

In figure 7, we plot non-overlapping windows of 60, 120 and 250 days in addition to our base

case.
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Figure 7: Display of average distance of networks based on 60, 120 and 250 business days
correlation of returns of industries and factors

Indeed, in line with Bonanno et al. (2001), we find that the choice of window size matters

for the networks. Larger window sizes are more stable, however, they can hide changes in
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the network topology. For example, in 2008, during the international financial crisis, the

average distance of the network decreased dramatically for windows of 60 and 120 days

and later increased again as the most acute period of the crisis was over. However, the

250 day window did not capture this change. On the other hand, in other periods, shorter

intervals may generate excessive jumps on the network size, such was the case in the crises

of the second half of the 1990s, when networks based on 60 days windows showed a greater

variance on their distance.

We rely on the same example to investigate the robustness of the network for different

comovement measures. In figure 8 we show the average distance of the network for four

different comovement metrics: Pearson, Kendall, Spearman and weighted. We note that

overall the metrics suggest that the size of network does not change dramatically when the

comovement measure is changed. An exception is made to the weighted correlation. Not

only they exhibit greater variance, which was expected given that more this metric gives

larger weight for more recent observations and, thus, a shorter window prevail, but also the

average average distance is usually smaller than in the other networks.
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Figure 8: Display of average distance of networks based on 120 business days and different
comovement measures

In figure 9, we see how the topology changes over time for the networks based on the

different comovement measures. Similarly, in this case, Pearson, Kendal and Spearman

correlation yield corresponding metrics, suggesting that the network is about the same for

them. The weighted correlation network, however, is less stable, changing more frequently

and more drastically. Additionally, a reduced standard deviation suggests that more idiosyn-

cratic connections are enabled over time in this network.
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Figure 9: Display of standard deviation of node degree of networks based on 120 business
days and different comovement measures.

5 Discussion and Conclusion

In this work, we provide a framework for modeling co-dependencies in asset price movements,

by creating a layered minimum spanning tree structure. This new methodology adds to the

previous literature of financial networks by allowing for explanatory factors to contribute in

describing connections between asset price nodes. The temporal changes in topology of this

type of network has also not been studied before.

The network is constructed following a greedy sequential approach of discovery of the

links. Asset prices and explanatory factors are nodes from different layers of the minimalist

interdependence structure. Connections between asset prices are allowed to occur through

the explanatory variables or firm-specific idiosyncratic characteristics. We evaluate the role

of these connections by investigating changes in topology of the network and strength of the

enabled connections.
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Another feature of this methodology is the flexibility in the choice of the explanatory

factors to suit the specific objectives of the study and the context of constructing minimalist

interdependency connections between nodes. The methodology permits comparisons of the

relative importance of factors for a given set of asset prices. This flexibility may serve the

purpose of decomposing the importance of different factors by adding or removing them from

the subset of explanatory factors.

The temporal characteristic of the network enhances our understanding of the links be-

tween the entities by evaluating the impact of economic shocks in the network topology.

While some of the connections are more persistent, other links are disabled and enabled ac-

cording to the different economic or financial conditions. This opens space for other analyses

regarding the persistence of these links and what is behind these changes in strength of the

connections.

In this paper we presented 3 cases for the application of the methodology. We start by

looking at industry level indices for the whole market, then we focus on large individual

stocks and later we focus on stocks from a single industry. We observe that the methodology

is helpful in understanding the changes between the interdependencies among entities in the

data-set. In particular, we were able to see dramatic changes in the topology of the network

in crisis periods of the financial system. The variety of changes in the topology and strength

of connections we observed in these cases deserve further exploration.

The cases shown here also highlight the flexibility of this framework in analyzing finan-

cially related phenomena. The methodology is agnostic to the underlying data and to the

choice of dependency structure. This may serve purposes of risk management and portfolio

allocation in contexts other than the analysis of market risk provided here.
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6 Appendix

Details of the entities included in the analysis of Section 3 are provided here. The explanatory

factors we use are given in the table below.

Table 1: List Of Explanatory Factors

# Ticker Name

1 RMRF Market Return - Risk Free Return

2 SMB Small minus Big

3 HML High minus Low
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Table 2: List of Industries
# Description # Description

1 Agriculture 26 Defense

2 Food Products 27 Precious Metals

3 Candy & Soda 28 Non-Metallic and Industrial Metal Mining

4 Beer & Liquor 29 Coal

5 Tobacco Products 30 Petroleum and Natural Gas

6 Recreation 31 Utilities

7 Entertainment 32 Communication

8 Printing and Publishing 33 Personal Services

9 Consumer Goods 34 Business Services

10 Apparel 35 Computers

11 Healthcare 36 Computer Software

12 Medical Equipment 37 Electronic Equipment

13 Pharmaceutical Products 38 Measuring and Control Equipment

14 Chemicals 39 Business Supplies

15 Rubber and Plastic Products 40 Shipping Containers

16 Textiles 41 Transportation

17 Construction Materials 42 Wholesale

18 Construction 43 Retail

19 Steel Works Etc 44 Restaurants, Hotels, Motels

20 Fabricated Products 45 Banking

21 Machinery 46 Insurance

22 Electrical Equipment 47 Real Estate

23 Automobiles and Trucks 48 Trading

24 Aircraft 49 Almost Nothing

25 Shipbuilding, Railroad Equipment

35



Table 3: List of Blue Chip Stocks
# Stock Industry

1 General Electric Industrial

2 3M Industrial

3 United Technologies Industrial

4 Honeywell international inc Industrial

5 Home Depot Consumer, Cyclical

6 Mcdonald’s Consumer, Cyclical

7 Nike Consumer, Cyclical

8 Walmart Consumer, Cyclical

9 Motors Liquidation Consumer, Cyclical

10 Johnson & Johnson Consumer, Non-cyclical

11 Coca-Cola Consumer, Non-cyclical

12 Merck & Co. Consumer, Non-cyclical

13 Pfizer Consumer, Non-cyclical

14 Procter & Gamble Consumer, Non-cyclical

15 United Health Group Consumer, Non-cyclical

16 Altria Group Consumer, Non-cyclical

17 IBM Technology

18 Intel Technology

19 Microsoft Technology

20 Hewlett-Packard Technology

21 Eastman Kodak co Technology

22 JPMorgan Chase Financial

23 Travelers Financial

24 Bank of America Financial

25 Citigroup inc Financial

26 Verizon Communications Communications

27 AT&T Communications

28 Exxon Mobil Energy

29 Alcoa Basic Materials

30 International Paper Basic Materials
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